Oscillatory activity in the neural networks of spiking elements.
نویسنده
چکیده
We study the dynamics of activity in the neural networks of enhanced integrate-and-fire elements (with random noise, refractory periods, signal propagation delay, decay of postsynaptic potential, etc.). We consider the networks composed of two interactive populations of excitatory and inhibitory neurons with all-to-all or random sparse connections. It is shown by computer simulations that the regime of regular oscillations is very stable in a broad range of parameter values. In particular, oscillations are possible even in the case of very sparse and randomly distributed inhibitory connections and high background activity. We describe two scenarios of how oscillations may appear which are similar to Andronov-Hopf and saddle-node-on-limit-cycle bifurcations in dynamical systems. The role of oscillatory dynamics for information encoding and processing is discussed.
منابع مشابه
Improving the Izhikevich Model Based on Rat Basolateral Amygdala and Hippocampus Neurons, and Recognizing Their Possible Firing Patterns
Introduction: Identifying the potential firing patterns following different brain regions under normal and abnormal conditions increases our understanding of events at the level of neural interactions in the brain. Furthermore, it is important to be capable of modeling the potential neural activities to build precise artificial neural networks. The Izhikevich model is one of the simplest biolog...
متن کاملDynamic Network Communication as a Unifying Neural Basis for Cognition, Development, Aging, and Disease
Perception, cognition, and social interaction depend upon coordinated neural activity. This coordination operates within noisy, overlapping, and distributed neural networks operating at multiple timescales. These networks are built upon a structural scaffolding with intrinsic neuroplasticity that changes with development, aging, disease, and personal experience. In this article, we begin from t...
متن کاملInformation Coding in Neural Models of Spiking Elements with External Forcing
Different encoding schemes are applied in neural network modelling at the level of a single neuron. (1) Fine temporal coding. The fine temporal structure of neuronal spiking is used as a basis for coding and information processing (Mainen & Sejnowski, 1995). (2) Rate coding. A single neural spiking rate is used as a code. This encoding scheme is rough because the temporal pattern of spiking is ...
متن کاملComparison Study on Neural Networks in Damage Detection of Steel Truss Bridge
This paper presents the application of three main Artificial Neural Networks (ANNs) in damage detection of steel bridges. This method has the ability to indicate damage in structural elements due to a localized change of stiffness called damage zone. The changes in structural response is used to identify the states of structural damage. To circumvent the difficulty arising from the non-linear n...
متن کاملNeural network dynamics.
Neural network modeling is often concerned with stimulus-driven responses, but most of the activity in the brain is internally generated. Here, we review network models of internally generated activity, focusing on three types of network dynamics: (a) sustained responses to transient stimuli, which provide a model of working memory; (b) oscillatory network activity; and (c) chaotic activity, wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bio Systems
دوره 67 1-3 شماره
صفحات -
تاریخ انتشار 2002